

A solid cylinder with radius R and height H has its base on the x, y -plane and is symmetric around the z -axis. There is a fixed volume charge density on the cylinder $\rho = \alpha z$. If the cylinder is spinning with period T :

1. Find the volume current density.

Solution The volume current density is given by:

$$\vec{J}(\vec{r}) = \rho(\vec{r}) \vec{v}(\vec{r}) \quad (1)$$

$$= \alpha z \frac{2\pi s}{T} \hat{\phi} \quad (2)$$

Notice that the velocity of the different parts of the cylinder is NOT constant, but rather depends on s , the distance from the axis.

2. Find the total current.

Solution This question is a little bit ill-defined. The total current through which surface? It would be logical to pick a surface that maximizes the answer, so we will pick the x, z -plane, where $\phi = 0$. The total current is the flux of the current density through this surface:

$$I_{\text{total}} = \int \vec{J}(\vec{r}) \cdot \hat{n} dA \quad (3)$$

$$= \int_0^R \int_0^H \alpha z \frac{2\pi s}{T} \hat{\phi} \cdot ds dz \hat{\phi} \quad (4)$$

$$= \alpha \frac{2\pi}{T} \int_0^R \int_0^H s z ds dz \quad (5)$$

$$= \alpha \frac{2\pi}{T} \frac{R^2}{2} \frac{H^2}{2} \quad (6)$$