

1. Consider a spin-1/2 system

- a) In Dirac notation, write down all the eigenvalue equations for the S_z operator.
- b) Represent the following spin-1/2 state:

$$|\psi_a\rangle = |+\rangle_y$$

- i. in Dirac notation using the S_z basis.
- ii. with Arms in the S_z basis.
- iii. as a column matrix in the S_z basis.
- iv. as a S_z probability histogram.

2. Consider a spin-1 system under the influence of a Hamiltonian $\hat{H} = \omega \hat{S}_n$.

- a) In Dirac notation, write down all the eigenvalue equations for the Hamiltonian.
- b) Represent the following spin-1 state:

$$|\psi_b\rangle = |1\rangle$$

- i. in Dirac notation using the energy basis.
- ii. with Arms in the energy basis.
- iii. as a column matrix in the energy basis.
- iv. as a energy probability histogram.

3. Consider a spin-2 system with 5 possible values for spin components: $2\hbar, \hbar, 0\hbar, -\hbar, -2\hbar$.

- a) In Dirac notation, write down all the eigenvalue equations for the \hat{S}_z operator.
- b) Represent the general state $|\psi_c\rangle$:

 - i. in Dirac notation using the S_z basis.
 - ii. with Arms in the S_z basis.
 - iii. as a column matrix in the S_z basis.
 - iv. as a S_z probability histogram.

4. Consider a quantum system where the position of the particle is something you can measure:

- a) In Dirac notation, write down all the eigenvalue equations for the \hat{x} operator.
- b) Represent the state $|\psi_d\rangle$:

 - i. in Dirac notation using the position basis.
 - ii. with Arms in the position basis.
 - iii. as a column matrix in the position basis.
 - iv. as a probability density graph.