
Solving the Schrodinger Equation Handout

The Schrodinger Equation:
Ĥ |ψ(t)⟩ = iℏ

∂

∂t
|ψ(t)⟩ (1)

This equation basically says that if I know how the Hamiltonian transforms a state, I know how the
state will evolve with time by solving the differential equation.

At this stage, I’ll consider a system where the Hamiltonian doesn’t depend on time: Ĥ ̸= Ĥ(t).
To solve, I’ll first write down the time-evolved state in a basis. Since the equation involves the

Hamiltonian, I’ll use the energy eigenstates as my basis:

|ψ(t)⟩ =
∑
m

cm(t) |m⟩ (2)

where the energy eigenvalue equation tells me that for any particular |ϕm⟩:

Ĥ |m⟩ = Em |m⟩ (3)
NOTE: Sometimes, the energy eigenvalue equation is call the time-independent Schrodinger Equa-

tion. I’ll keep calling it the energy eigenvalue equation.
Notice that the energy eigenstates don’t evolve with time. This seems reasonable given that I’m

considering a Hamiltonian that doesn’t depend on time. Therefore, all the time dependence for the time
evolved state is in the probality amplitudes/expansion coefficients cm(t).

Now, I’ll plug this time evolved state written as a sum into the Schrodinger Equation,

Ĥ
∑
m

cm(t) |m⟩ = iℏ
∂

∂t

∑
m′

cm′(t) |m′⟩ (4)

where I’ve used m′ to label the terms to distinguish them from the m terms - I don’t mean take a
derivative.

Now, I’ll let the Hamiltonian act on each term in the sum on the left hand side. The expansion
coefficients are not affected:

Ĥ
∑
m

cm(t) |m⟩ =
∑
m

cm(t)Ĥ |m⟩ (5)

=
∑
m

cm(t)Em |m⟩ (6)

On the right hand side of equation (4), I’ll take the time derivative. I can pull the constant and the
time derivative inside the sum so that they act on each term. The expansion coefficients depend on time
but no other variable. The energy eigenstates do not depend on time.

iℏ
∂

∂t

∑
m′

cm′(t) |m′⟩ =
∑
m′

iℏ
∂cm′(t)

∂t
|m′⟩ (7)

Putting these together in Equation (4), I get:
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∑
m

cm(t)Em |m⟩ =
∑
m

iℏ
∂cm′(t)

∂t
|m′⟩ (8)

I’m trying to find how the expansion coefficients depend on time, so I need a differential equation
in terms of the coefficients. I’ll use the orthonormality of the energy eigenstates to find this differential
equation. So, I’ll multiply from the left by ⟨m′′|.

⟨m′′|
∑
m

cm(t)Em |m⟩ = ⟨m′′|
∑
m

iℏ
∂cm′(t)

∂t
|m′⟩ (9)

I can bring the ⟨m′′| into the sums over m and m′.

∑
m

cm(t)Em ⟨m′′|m⟩ =
∑
m

iℏ
∂cm′(t)

∂t
⟨m′′|m′⟩ (10)

Now, I recognize that these brakets are Kronecker Delta’s:

⟨m′′|m⟩ = δm′′m (11)
⟨m′′|m′⟩ = δm′′m′ (12)

(13)

which transforms all the m’s and m′’s to m′′’s when I perform the sums.

∑
m

cm(t)Emδm′′m =
∑
m

iℏ
∂cm′(t)

∂t
δm′′m′ (14)

cm′′(t)Em′′ = iℏ
∂cm′′(t)

∂t
(15)

(16)

Using m′′ is awkward, so I’ll switch back to m. Now, I can treat the partial derivative as a total
derivative because the expansion coefficient if a function of time only.

cm(t)Em = iℏ
dcm(t)

dt
(17)

(18)

This equation is now a first order ODE that’s separable. First I separate:

dcm
cm

=
−iEm

ℏ
dt (19)

(20)
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Integrate both sides:

∫ cm(t)

cm(0)

dc′m
c′m

=
−iEm

ℏ

∫ t

0

dt′ (21)

ln cm(t)− ln cm(0) =
−iEm

ℏ
t (22)

ln

[
cm(t)

cm(0)

]
=

−iEm

ℏ
t (23)

cm(t) = cm(0)e
−iEm

ℏ t (24)

Plugging this back into equation (2):

|ψ(t)⟩ =
∑
m

cm(t) |m⟩ (25)

|ψ(t)⟩ =
∑
m

cm(0)e
−iEm

ℏ t |m⟩ (26)

(27)

Therefore, to write down the time evolved state for a time-independent Hamiltonian:

1. Find the energy eigenvalues and eigenstates of the Hamiltonian.

2. Write the initial state is the energy eigenstate basis.

3. Multiply each term in the expansion by a complex phase with the corresponding energy eigenvalue

Important features of the time-evolved state:

• You can only put time evolution phases on states that are written in the energy basis

• Each eigenstate gets its own time-dependent phase that includes the energy of that eigenstate

• The time-dependent phase is norm 1 - it’s doesn’t affect normalization or the relative probabilities
associated with energy eigenstates.
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