Momentum Representation of the Energy Eigenstates of the Infinite Square WelHandout

Calculate the momentum space wave function for a particle in an energy eigenstate of the infinite
square well.
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The energy eigenstates are:

So, my transformation becomes:
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This is not a simple sum of momentum eigenstates.

To put this into a slightly better form, I'll use the fact that:
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Making the substitution:
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To better understand this, I'll calculate the probability density and plot it:
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Remembering that py = %i, the cosine term simplifies:
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Plotting the probability density, (setting h =1, L = 1, and n = 1) I see two strong peaks at the
+po but not quite delta functions.
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