

Reflect on the quantum systems you've studied. It turns out, there are only a few kinds of questions that you can ask about a quantum system.

On your whiteboard, brainstorm a list of those questions. What questions can you ask about a quantum system?

Solution A list of Core Quantum Questions:

1. What are the observables? (What quantities can you measure?)
 - a) What is the spectrum of values can you get from a set of measurements? (eigenvalues)
 - b) What will the state of the system be after a measurement? (eigenvectors)

$$\hat{A} |a\rangle = a |a\rangle$$

- c) What quantities can you know simultaneously? (commuting observables)

$$0 = [\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

2. What state is the system in?

- a) What is the probability of measuring a particular value of an observable?

$$\begin{aligned} \mathcal{P}(a) &= \left| \langle a | \psi \rangle \right|^2 \\ &\doteq \left| \int_{\text{all space}} \phi_a^*(x) \psi(x) dx \right|^2 \end{aligned}$$

- b) What is the probability of measuring a range of values?

$$\begin{aligned} \mathcal{P}(a_1 \& a_2) &= \sum_{m=1}^2 \left| \langle a_m | \psi \rangle \right|^2 \\ \mathcal{P}(a \leq x \leq b) &= \int_a^b |\psi(x)|^2 dx \end{aligned}$$

- c) What is the expectation value?

$$\begin{aligned} \langle A \rangle &= \sum_m \mathcal{P}_{a_m} a_m \\ &= \langle \psi | A | \psi \rangle \\ &\doteq \int_{\text{all space}} \psi^*(x) \hat{A} \psi(x) dx \end{aligned}$$

d) What is the uncertainty?

$$\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$$

e) How are uncertainties of different quantities related?

$$\Delta A \Delta B \geq \frac{1}{2} |\langle [A, B] \rangle|$$

3. What will happen to the state when I make a measurement?

$$|\psi_f\rangle = \frac{\hat{P}|\psi_i\rangle}{\sqrt{\langle\psi_f|\hat{P}|\psi\rangle}}$$

where

$$\hat{P} = \sum_m |a_m\rangle \langle a_m|$$

that correspond to the values a_m that you got from the measurement (Notice the verb tense here. You have to know what the collection of output states is. This is not a deterministic calculation.)

4. How will a quantum state evolve with time?

If $\hat{H} \neq \hat{H}(t)$

$$|\psi(t)\rangle = \sum_n c_n(0) e^{-iE_n t/\hbar} |E_n\rangle$$