

1. Let $\vec{F} = 3s \hat{s}$.

- Make a rough sketch of \vec{F} .
- Suppose you have a paddlewheel and dipped it into a pool that flowed according to \vec{F} . Would the paddlewheel spin?
- This is related to the line integral of \vec{F} around a closed path. Do you think the line integral would be positive negative or zero?

2. Let $\vec{G} = \frac{1}{s} \hat{\phi}$.

- Make a rough sketch of \vec{G} .
- Suppose you have a paddlewheel and dipped it into a pool that flowed according to \vec{G} . Would the paddlewheel spin?
- This is related to the line integral of \vec{G} around a closed path. Do you think the line integral would be positive negative or zero?

3. The trait highlighted in #1 and #2 can be quantified by *curl*. In two dimensions, the curl of $F_s \hat{s} + F_\phi \hat{\phi}$ is $(\frac{1}{s} \frac{\partial}{\partial s} (s F_\phi) - \frac{\partial}{\partial \phi} F_s) \hat{z}$.

- Compute the curl for both \vec{F} and \vec{G} .