Monte Carlo DNA Handout

This is going to be a lengthy multi-week activity.

1 DNA as a random walk

DNA can be modeled as a chain of segments each with length L, where neighboring segments are freely
hinged. Real DNA actually acts more like a rubber hose than a chain, but provided the length L is
chosen wisely, the two give identical predictions for long DNA molecules. This model of DNA gives
shockingly accurate results for the force on the two ends as a function of the distance between them.
Mathematically, this problem is called a “random walk,” since the displacement corresponding to each
segment is in a random direction. Random walks can also be used to describe diffusion, repeated
measurements, or any number of other physical scenarios.

Missing /var/www/paradigms_media_2/media/activity_media/dna-chain.pdf

2 Monte Carlo

A Monte Carlo method is a way to compute something using random numbers. There are a wide variety
of Monte Carlo algorithms, used for anything from integration to summation. In general, Monte Carlo
algorithms are helpful when you have something that you can’t solve analytically, and it is computa-
tionally prohibitive to just brute-force it.

We will apply a Monte Carlo simulation to examining DNA chains. For a long chain, it would be
hard to attempt to computationally evaluate every possible combination of orientations for all N links,
which makes the Monte Carlo approach appealing.

We will examine the distance in the x direction between the beginning and end of the chain. This
quantity is relevant when an experimentalist attaches those ends to a fixed object and the other to a
bead (which could be left free or held in optical tweezers). We will limit your DNA to move in two
dimensions for ease of visualization, although of course real DNA can flop in three dimensions.

Your single-link tasks

1. Write code to pick a random angle for the link of DNA, and from this to find the x and y coordinates
of the end of the link. The beginning of the link is at the origin.

2. Find the average value of 22 by picking many random angles and averaging the 22 for each one.

3. Find the average value of x in the same way. Does it match what you expect?

Extra fun Plot the average value of x versus the number of random orientations used in the simulation.
Also plot the average value of 2% in the same way.

Log fun Create a log-log plot of the extra-fun data, and explain the shape of the curve.

When you have finished this task, please raise your hand to show your result with a member
of the teaching team!


https://en.wikipedia.org/wiki/Random_walk
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Tethered_particle_motion
https://en.wikipedia.org/wiki/Optical_tweezers

Monte Carlo DNA Handout

Your multi-link tasks Please create a new python file for this task. Note that x and y are the
coordinates of the end of the entire chain.

1. Write code to pick a configuration of N random angles describing a chain with N links, each
with length L. I encourage you to try several different values for N, but among others please
experiment with N = 100.

2. Write a program to plot a random chain. Each line segment on you plot should have an equal
length, since each link has an equal length. You should be able to rerun your program a few times
in order to see a few random chains.

3. Find the average value of 22 for your N-link chain by averaging over many random chains. How
does this compare with the average value of 22 for a single-link chain?

4. Plot the average value of 22 versus the number of links in the chain. Look for an analytic function
that will match this plot. Note that this will require computing a separate average for each chain
length you consider.

5. Plot the average value of y/x? + y? versus the number of links in the chain. Look for an analytic
function that will match this plot. Note that this will require computing a separate average for
each chain length you consider.

Less bendy Adjust your code to constrain the relative angle between two neighboring segments to
have less than a given magnitude. How does that change your results?

3 Probability density

We have now calculated the average values of x and 2. These are in themselves interesting quantities,
but that is a pretty limited result. Things get more interesting (and harder) if we can predict the
distribution of values for x, which we call the probability density. The probability density P(z) is
the probability per x that the system will have a value x. Another perspective is that P(x)Ax tells us
the fraction of systems that have x values between x — Az /2 and x4+ Ax/2. In many cases a probability
density will tell us all that we want to know about a system.

In order to compute P(x), we are going to need to make it discrete, since we can’t in a finite amount
of time compute an infinite number of values (for all possible z). We do this by dividing the domain
of z up into bins. A bin corresponds to a range of x values, so that we can count how many times we
observe systems in that range.

Old-style cubits A cubit is a measure of length from your elbow to your longest finger. It’s got a
problem in that each of us have our own cubit. Let’s investigate the distribution P(c) of cubits among
physicists. To do this, we’ll need to take lots of measurements (one class-worth) and collect data. Odds
are that none of us have an equal cubit, so we’ll need to divide up the range of possible cubits into bins.
I'll pick bins with a width of 0.5 cm, and draw them on the board. Please measure your cubit, and then
come to the board and add a tally mark in the appropriate bin.

We can then approximate P(c) as having a value that is 5="— in each bin.

I plan to approximately plot our probability distribution of cubits for the class.



Monte Carlo DNA Handout

Average notation In physics, we often use the notation where (x) refers to the average value of z,
and (x?) refers to the average value of 2. Computing an average such as this using Monte Carlo requires
that you construct many random systems (in our case DNA chains) and then compute the average by
adding up the z (or ?) for each chain, and dividing by the total number of chains.

As a suggestion (but not a requirement), your code may be easier to write and to read if you separate
the process of creating a random DNA chain and computing the x which is its final coordinate into a
separate function. This way the “create a random system” logic can be separated from the “average
over many random systems” logic.

Note that once you have an estimate for the probability density P(z), you can compute averages
over the distribution using

(x) = /P(x)m“dx (1)

This is a major advantage of knowing the probability distribution: it allows you to compute averages
that you didn’t previously consider.

Single-link probability density task Please create a new python file for this task. Note that once
again x and y are the coordinates of the end of the chain, but now the chain will have just one link in
it.

1. Create a numpy array n with length Ny, to hold the number of times you have observed z in each
bin. This array should initially be full of zeros, since you haven’t yet observed any = values.

2. Generate a random configuration for a single-link chain and compute x, and then figure out which
bin x is in. This bin will be given by:
N-L
bin number = LNbins (rounded down to an integer) (2)
2N - L
where N is the number of links in the chain (1 in this case), L is the length of each link, and Ny
is the number of bins.

Once you have this bin number, you will want to increment the corresponding element of your n
array.

3. Create a loop that generates many configurations of your single-link chain, and for each one
increments the count for the appropriate bin.

4. Create a probability density array by dividing by the number of samples you took and by Az =

i[]: L the size of each bin. In this case N = 1, but it’s worth including the factor of N to avoid

problems on the next task.

5. Plot the probability density P(x) for a single-link chain.

6. On your P(x) plot, draw a vertical line at the square root of the average 2?2, i.e. \/(x2).



Monte Carlo DNA Handout

Multi-link probability-density task Having examined the probability density for x of a single-link
DNA chain, we will now examine the probability density for an N-link chain. Conceptually, the code
to compute the probability density will look very much like the single-link code, except that the range
of possible x values will be wider. Once again, please start a new file for this program.

1.

Create a numpy array called n with length Ny;,s to hold the number of times you have observed x
in each bin. You will probably need a greater value of Ny;,s than you were able to use for a single
link.

Generate a random configuration for an N-link chain and compute z, and then figure out which
bin x is in. This bin will be given by:
N-L
bin number = x;\f—LNbinS (rounded down to an integer) (3)
where N is the number of links in the chain, L is the length of each link, and Ny, is the number
of bins.

Once you have this bin number, you will want to increment the corresponding element of your n
array.

Create a loop that generates many configurations of your single-link chain, and for each one
increments the count for the appropriate bin.

Create a probability density array by dividing by the number of samples you took and by Az =

]%N L the size of each bin.
bins

Plot the probability density P(z) for your N-link chain.
On your P(z) plot, draw a vertical line at the square root of the average z?, i.e. \/(z?2).

Set N = 1 to confirm that in this case your N-link chain gives the same prediction as the single-link
code.

Extra fun Adjust your code to constrain the relative angle between two neighboring segments to have

less than a given magnitude (e.g. between —7/2 and 7/2), making the DNA less flexible. How
does that change your results?



	DNA as a random walk
	Monte Carlo
	Probability density

