Waves on a string Handout

We will be modeling waves on a string under tension, as in a guitar. This system is accurately
described by the non-dispersive one-dimensional wave equation.

0?y(x,t) g 0?y(x,t)
a2 o2 (1)

where the wave speed v is given by

v =

T
M (2)

where 7' is the tension in the string, and p is the mass per unit length of the string. Since a string could
have a non-uniform linear mass density, we could write p(x) which gives us a position-dependent speed

v(x).
WARNING WARNING WARNING Please do not name your file string.py, because there is a

bug in python34+numpy which triggers an error on import numpy if such a file exists.

We will solve this partial differential equation using a finite-difference approach, in which we treat
both time and space in terms of finite differences At and Az. When we do this, our partial differential
equation becomes a finite difference equation:

—2y(z,t) + y(x, t — At) + y(z, t + At)
At?

Ax?

which we can simplify a bit to look like:
2y(x,t) — y(z,t — At) —y(z,t + At) =
v2§—;22 (2y(x,t) —y(x — Az, t) — y(x + Az, t)) (4)
We can now solve for the future value of y, and we will have the Verlet method:
y(z,t + At) =

Qy(.’E, t) - y(l’,t - At)
— 0?88 (2y(x,t) — y(z — Az, t) — y(z + Az, 1)) (5)
This is a formula which you can implement. Note that in order to solve for the future value of y,

you need to know both its current value and its previous value.

0.1 Creating a wave packet

So far (with balls and springs) you have mostly been working with normal modes. They are nice,
but sometimes are less than helpful, if we want to understand how pulses propogate. Even looking at
reflection and transmission, while possible using plane waves, can be inconvenient.

1



Waves on a string Handout

Travelling waves can also lead to interesting insights. Travelling waves are solutions of the wave
equation that have the form:

y=f(z—vt)
where f is any smooth function.

For this task you will implement initial conditions for a “wave packet”, which is a travelling wave
that is localized in space, i.e. it has y = 0 for all positions the left or the right of the wave packet.

1. Write a fresh code to solve the linear wave equation. You may look a the code from the old balls
and springs code, but I'd like you to start an entirely new file, and ensure that your variable names
match the wave equation (i.e. use v in your code, and there are no “balls”). (As before, you will
want to use 2D arrays to store your displacement y(z,t).) Animations will be useful.

2. Implement the initial conditions for a wave packet, and verify that it moves in the expected
direction using your code that solves the wave equation.

Clarification Your wave packet should start somewhere in the center of your string, not right
next to the wall. There should initially be a clearly visible region of y ~ 0 on each side of
your wave packet.

a) Choose a smooth function that approaches zero in both directions. Any function should work,
but keep in mind that you’ll probably end up wanting to tweak the width of the function as
well as its location.

b) Create a python function of position f(x) that returns your smooth function.

¢) Set your initial conditions (i.e. y(z,t) for the first two time steps) to f(x — vt).

3. As before, create a static visualization of your wave packet. Note that to be effective this time your
static visualization should use time was one of its two azes, so that you can clearly see the packet
moving over time.

0.2 Reflection and transmission

Now imagine that you wrap wire around a portion of the string (think guitar string), increasing its mass
density p for just a portion of its length. This will change the wave speed on that portion of the string.
You could alternatively thing of this as tying two different thicknesses of string together.

1. Adjust your code so Ax # 1 and At # 1. Further refine your code so that if you have variables
named z or t, those variables correspond to the actual position and time in distance and time
units (i.e. they are not restricted to integer values).

2. Ensure that you have defined a python function that gives the initial shape of your wave, i.e. y(x,t =
0). Use this function to initialize your string for the first two time steps.

3. Make a portion of the string have half the speed v as the rest of the string. This is most easily
accomplished by making v an array, and setting some of its elements to half the value of the rest
of the string. Ensure that your wave packet is entirely on a portion of string that has the original
speed. Observe the reflected and transmitted pulses with your animation.



Waves on a string Handout

4. Create a static visualization or two. Identify the two speeds of your string as slopes on your
visualization. Note: these slopes probably won’t be correct unless you do the following task.

5. Ensure all your figures have proper dimensions for each axis, e.g. x should be in distance units,
and should correspond to the length of your string, which is not the same as the number of Ax in
your string.

Extra fun Play with different configurations of heavy and light string or different wave packets to make
pretty and/or interesting things happen.

Dispersion relation fun 1. Find a normal mode of the system (which has a repeating pattern).
What is the period (and frequency) of this normal mode?

2. Plot the normal mode frequency versus k = 27” This is called a dispersion relation.

0.3 Numerical stability

An algorithm is numerically unstable if small errors grow exponentially. In the particular case of our
finite difference integration of the wave equation, our numerical stability is determined by the relationship
between the resolution in space and time, Az and At. To understand numerical stability physically, it
is often helpful to consider the dimensions and behavior in the relevant dimensions.

In this case, it is useful to ask how quickly the y coordinate might change, and then to ensure that
our At is considerably smaller than that value. There are various ways to estimate this value, but for
the non-dispersional wave equation, there is a very simple way to think about this. (When we get to
Schroedinger’s equation, we will use one of the other approaches.)

Consider the case where y = 0 for z > xy. We know that a signal will travel at speed v. If Ax < vAt,
then the signal ought to travel by more than one grid point in one time step. In our algorithm (if you
look carefully) that cannot happen. Therefore, since we know we will get nonsense otherwise, we can
conclude that

At < ar (6)
v
One can derive a more precise stability limit, but we can also just experiment to find what At values
give good results. Note that this means that if you increase v, you must also decrease At.



	Creating a wave packet
	Reflection and transmission
	Numerical stability

