

Fig. 3.—Specific heat of hydrogen.

Cornish and Eastman (1928)

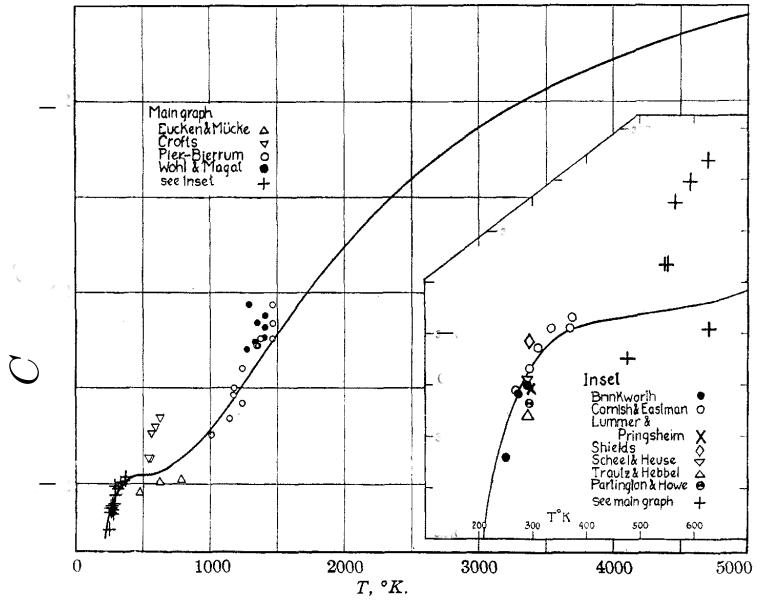


Fig. 1.—The heat capacity of hydrogen (the curve drawn from the spectroscopic data).

Davis and Johnston (1934)

 Figure 1: Experimental heat capacity data for H₂.

The heat capacity at fixed volume (experimental data plotted above) is given by

$$C_V = \frac{dU}{dT} \quad (1)$$

In many quantum mechanical systems (including a H₂ molecule) energy cannot vary continuously. There is a discrete set of allowed energies for each degree of freedom associated with the gas molecule.

1. Translational K.E. in one direction: $\{1 \times 10^{-39} \text{ J}, 4 \times 10^{-39} \text{ J}, 9 \times 10^{-39} \text{ J}, \dots\}$
2. Rotational K.E.: $\{0, 4 \times 10^{-21} \text{ J}, 4 \times 10^{-21} \text{ J}, 4 \times 10^{-21} \text{ J}, 12 \times 10^{-21} \text{ J}, \dots\}$
3. Vibrational energy: $\left\{ \underbrace{4.4 \times 10^{-20} \text{ J}, 13.2 \times 10^{-20} \text{ J}, 22 \times 10^{-20} \text{ J}, \dots}_{\text{"zero point energy"}} \right\}$

If the temperature is small ($\frac{1}{2}k_B T$ is small), there can arise a conflict between the rules of quantum mechanics and the equipartition theorem.

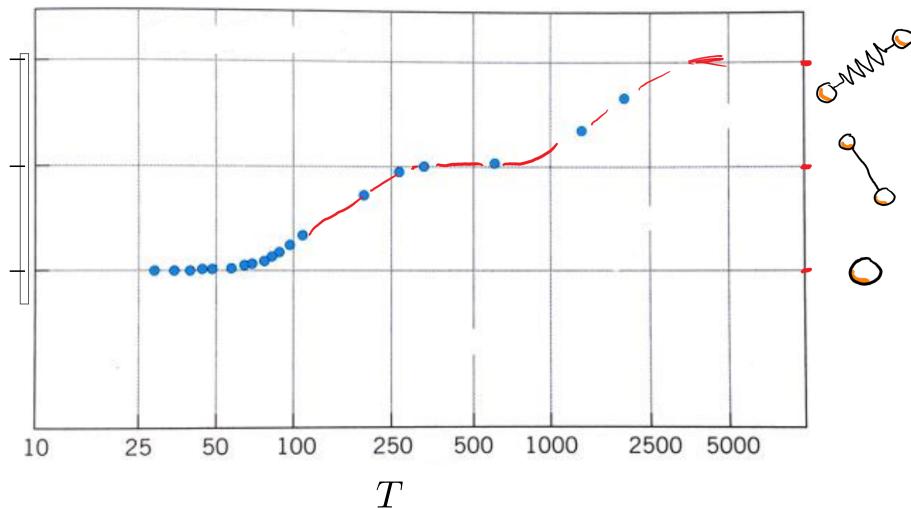
For a diatomic molecule, we can write its classical energy in terms of independent coordinates as:

$$E = \underbrace{\frac{1}{2}(2m)v_x^2 + \frac{1}{2}(2m)v_y^2 + \frac{1}{2}(2m)v_z^2}_{\text{Translational K.E. of entire molecule}} + \underbrace{\frac{1}{2}\frac{L_x^2}{I_x} + \frac{1}{2}\frac{L_y^2}{I_y}}_{\text{Rotational K.E.}} + \underbrace{\frac{1}{2}m\left(\frac{1}{2}\frac{d\ell}{dt}\right)^2 + \frac{1}{2}k(\ell - \ell_0)^2}_{\text{K.E. + P.E. of spring}} \quad (2)$$

This should (according to the equipartition theorem) give us

$$E = \underbrace{\frac{1}{2}(2m)v_x^2 + \frac{1}{2}(2m)v_y^2 + \frac{1}{2}(2m)v_z^2}_{\text{Translational K.E. of entire molecule}} + \underbrace{\frac{1}{2}\frac{L_x^2}{I_x} + \frac{1}{2}\frac{L_y^2}{I_y}}_{\text{Rotational K.E.}} + \underbrace{\frac{1}{2}m\left(\frac{1}{2}\frac{d\ell}{dt}\right)^2 + \frac{1}{2}k(\ell - \ell_0)^2}_{\text{K.E. + P.E. of spring}} \quad (3)$$

But now we can see that if $\frac{1}{2}k_B T < 0.1 \times 10^{-20}$ J then the vibrational state of the H₂ molecule cannot respond to changes in temperature. The molecule remains stuck in its lowest energy state. Its behavior is equivalent to a molecule connected by a rigid rod.



Highest temperatures In excess of 5000 K, the molecule behaves like we would expect a springy diatomic molecule to do classically. This is because

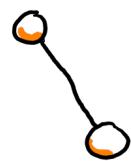
$$\frac{1}{2}k_B T \gg 8.8 \times 10^{-20} \text{ J} \quad (4)$$

which is the amount of energy required to “excite” a hydrogen molecule’s vibrational degrees of freedom.

Lowest temperatures At very low temperatures, less than around 50 K, the hydrogen molecule behaves as if it were a monatomic atom, since there isn’t even enough energy available to rotate it. In terms of math

$$\frac{1}{2}k_B T \ll 4 \times 10^{-21} \text{ J.} \quad (5)$$

Figure 3:
 $f = 3$



Middle temperatures Around 500 K, we have a Goldilocks range of temperatures (not too hot, and not too cold) where the hydrogen molecule will behave like a rigid rod: it's got enough energy to rotate, but not enough energy to vibrate.

$$4 \times 10^{-21} \text{ J} \ll \frac{1}{2}k_B T \ll 8.8 \times 10^{-20} \text{ J.} \quad (6)$$

Figure 4:
 $f = 5$