
Propagating uncertainty Handout

A good training in physics requires a solid understanding of uncertainty1.
We can imagine a model (which might be wrong) as a function f(a, b) of some input parameters a

and b. Those input parameters might be off. The result will be an output with ± uncertainty. The
uncertainty can’t account for the model being wrong, but it can account for the input parameters having
some estimated uncertainty.

Zeroth order analysis You can simply estimate extreme values for the plausible error on the inputs.
Then run your calculation with all permutations of ±, and choose the highest and lowest values of your
bound.

This approach is pessimistic, as it gives you a worst case scenario. Sometimes this can be good, but
often it’s unrealistic. Error estimation is not about ensuring that the true answer is definitely within
your bounds, but rather it is about trying to make a best guess of the likely error.

A better estimation We can refine the zeroth-order estimate of uncertainty propagation by consid-
ering that each input parameter comes from a distribution of possible values.

There is a most likely value (the mode of the distribution), and a mean value, as well as a standard
deviation of the distribution. The true value is typically withing one standard deviation of the mean
68% of the time.

Figure 1: Distributions of values for parameters a and b. The shaded region represents the range ±σ
around the mean value, where σ is the standard deviation.

I can imagine choosing a and b randomly from these probability distributions, and then constructing
a probability distribution of f(a, b). I could then find the standard deviation of this distribution, and
call that my uncertainty in f .

1Note: error and uncertainty technically mean different things, but I will use them interchangeably to mean uncertainty,
because I’m sloppy. There is a significant uncertainty in the meaning I attach to the word “error.” And that is mostly a
joke
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Figure 2: Distributions of the output f obtained by combining the input distributions for parameters a
and b.

Provided the distributions of a and b are not correlated with each other, and the function f(a, b)
is does not deviate very much from linear behavior over the distributions of a and b, we can use the
following formula to find the uncertainty in f , which we will call σf :
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Figure 3: An illustration of why the derivative of f with respect to its input parameters affects its
uncertainty.

You won’t often need to use this partial derivative relationship, because most often we just add,
multiply, subtract, and divide, and you can just use a little table:
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