pdf link for the completed Table
Each ket \(|\ell,m\rangle\) gets its own exponential energy term. The first ket has energy \(E_2=\frac{\hbar^2}{2I}\, 2(2+1)=6\frac{\hbar^2}{2I}\) and the second ket has energy \(E_1=\frac{\hbar^2}{2I}\, 1(1+1)=2\frac{\hbar^2}{2I}\). Therefore \[\left|{\psi(t)}\right\rangle =\frac{1}{\sqrt{2}}\left(\left|{2,0}\right\rangle e^{-iE_2t/\hbar} +\left|{1,0}\right\rangle e^{-iE_1t/\hbar}\right)\] This expression depends on time.
Both kets, even as functions of time, are eigenstates of \(L_z\) with eigenvalue \(0\hbar\), therefore the expectation value is \(0\), independent of time.
We can check that the calculation methods give this same answer:
Using the sum over probabilities method, we see that \begin{align} \langle L_z\rangle&=0\hbar\, \mathcal{P}(\left|{2,0}\right\rangle )+0\hbar\, \mathcal{P}(\left|{1,0}\right\rangle )\\ &=0\hbar\,\left\vert\frac{1}{\sqrt{2}}\left|{2,0}\right\rangle e^{-iE_2t/\hbar}\right\vert^2 +0\hbar\,\left\vert\frac{1}{\sqrt{2}}\left|{1,0}\right\rangle e^{-iE_1t/\hbar}\right\vert^2\\ &=0\hbar\left(\frac{1}{2}+\frac{1}{2}\right)\\ &=0 \end{align}
Using the bra/ket method, we see that \begin{align} \langle L_z\rangle &=\left\langle {\psi(t)}\right|\, L_z\, \left|{\psi(t)}\right\rangle \\ &=\frac{1}{\sqrt{2}}\left(\left\langle {2,0}\right|e^{iE_2t/\hbar} +\left\langle {1,0}\right|e^{iE_1t/\hbar}\right)\, L_z\,\frac{1}{\sqrt{2}}\left(\left|{2,0}\right\rangle e^{-iE_2t/\hbar} +\left|{1,0}\right\rangle e^{-iE_1t/\hbar}\right)\\ &=\frac{1}{\sqrt{2}}\left(\left\langle {2,0}\right|e^{iE_2t/\hbar} +\left\langle {1,0}\right|e^{iE_1t/\hbar}\right) \frac{1}{\sqrt{2}}\left(0\hbar\left|{2,0}\right\rangle e^{-iE_2t/\hbar} +0\hbar\left|{1,0}\right\rangle e^{-iE_1t/\hbar}\right)\\ &=0 \end{align}
The eigenvalue \(L^2=6\hbar^2\) corresponds to \(\ell=2\) which happens only for the first eigenket. \begin{align} \mathcal{P}(L^2=6\hbar^2)&=\left\vert\left\langle {2,0}\middle|{\psi(t)}\right\rangle \right\vert^2\\ &=\left\vert \frac{1}{\sqrt{2}}e^{-iE_2t/\hbar}\right\vert^2\\ &=\frac{1}{2} \end{align} The time dependence cancels. Any probability like this will cancel as long as the operator for which the physical property is being measured (in this case, \(L^2\)) commutes with the Hamiltonian. In that case, every eigenket has only one exponential time dependence in it and the time dependence will cancel for each separate probability.
To calculate a probability in space, we need to use the wave function representation. We can look up the spherical harmonics in a table: \begin{align} \psi(\theta, \phi, t)&=\left\langle {\theta, \phi}\middle|{\psi(t)}\right\rangle \\ &=\frac{1}{\sqrt{2}}\left(Y_2^0(\theta,\phi)\, e^{-iE_2t/\hbar} +Y_1^0(\theta,\phi)\, e^{-iE_1t/\hbar}\right)\\ &=\frac{1}{\sqrt{2}}\left(\sqrt{\frac{5}{16\pi}}\left(3\cos^2\theta-1\right)\, e^{-iE_2t/\hbar} +\sqrt{\frac{3}{4\pi}}\left(\cos\theta\right)\, e^{-iE_1t/\hbar}\right)\\ \end{align} Now we need to integrate the probability density \(\vert\psi(t)\vert^2\) over the relevant part of the sphere. Don't forget to use the area element for the sphere (i.e. include a factor of \(\sin\theta\)). \begin{align} \mathcal{P}&=\int_0^{2\pi}\int_{\pi/2}^{\pi} \left[\frac{1}{\sqrt{2}}\left(\sqrt{\frac{5}{16\pi}}\left(3\cos^2\theta-1\right)\, e^{-iE_2t/\hbar} +\sqrt{\frac{3}{4\pi}}\left(\cos\theta\right)\, e^{-iE_1t/\hbar}\right)\right]^*\\ &\qquad\left[\frac{1}{\sqrt{2}}\left(\sqrt{\frac{5}{16\pi}}\left(3\cos^2\theta-1\right)\, e^{-iE_2t/\hbar} +\sqrt{\frac{3}{4\pi}}\left(\cos\theta\right)\, e^{-iE_1t/\hbar}\right)\right] \sin\theta\, d\theta\, d\phi\\ \end{align} Aaaackkk!! Don't panic. Take a deep breath, foil-like-mad, and recognize when you need to use the exponential definition of cosine: \begin{align} \mathcal{P}&=\frac{1}{2}\int_0^{2\pi}\int_{\pi/2}^{\pi} \left[\frac{5}{16\pi}\left(3\cos^2\theta-1\right)^2 +\frac{3}{4\pi}\left(\cos\theta\right)\right.\\ &\qquad\left.\sqrt{\frac{15}{64\pi^2}}\,\cos\theta\left(3\cos^2\theta-1\right)\, \left(e^{+iE_2t/\hbar}e^{-iE_1t/\hbar}+e^{+iE_1t/\hbar}e^{-iE_2t/\hbar}\right) \right] \sin\theta\, d\theta\, d\phi\\ &=\frac{1}{2}\int_0^{2\pi}\int_{\pi/2}^{\pi} \left[\frac{5}{16\pi}\left(3\cos^2\theta-1\right)^2 +\frac{3}{4\pi}\left(\cos\theta\right)\right.\\ &\qquad\left.\sqrt{\frac{15}{64\pi^2}}\,\cos\theta\left(3\cos^2\theta-1\right)\, 2\cos\left(\frac{(E_2-E_1)t}{\hbar}\right) \right] \sin\theta\, d\theta\, d\phi\\ \end{align} While this expression looks messy, it is the sum of a bunch of powers of \(\cos\theta\) times \(\sin\theta\), so a simple \(u\)-substitution will work. You can finish the problem.
Because the cross-terms are non-zero, this expression will clearly be time dependent. The probability of where the mass is depends on time! Hurray! Finally the universe has become interesting.
\begin{align} \mathcal{P}&=\left\vert\left\langle {\psi(0)}\middle|{\psi(t)}\right\rangle \right\vert^2\\ &=\left\vert\frac{1}{\sqrt{2}}\left(\left\langle {2,0}\right|+\left\langle {1,0}\right|\right) \frac{1}{\sqrt{2}}\left(\left|{2,0}\right\rangle e^{-iE_2t/\hbar} +\left|{1,0}\right\rangle e^{-iE_1t/\hbar}\right)\right\vert^2\\ &=\left\vert\frac{1}{2}\left(e^{-iE_2t/\hbar}+e^{-iE_1t/\hbar}\right)\right\vert^2\\ &=\frac{1}{4}\left(e^{iE_2t/\hbar}+e^{iE_1t/\hbar}\right) \left(e^{-iE_2t/\hbar}+e^{-iE_1t/\hbar}\right)\\ &=\frac{1}{4}\left(1+1 +\left(e^{+iE_2t/\hbar}e^{-iE_1t/\hbar}+e^{+iE_1t/\hbar}e^{-iE_2t/\hbar}\right)\right)\\ &=\frac{1}{2}\left(1+\cos\left(\frac{(E_2-E_1)t}{\hbar}\right)\right) \end{align} The state oscillates with time and returns to the initial state periodically.