

Turn in this HW on or before Friday at 8pm.

1 Analyze TS rectangle

Consider a monatomic ideal gas that undergoes a 4-step cyclic process. On a T - S diagram, the four steps of the process trace out a rectangle. The cycle proceeds in the clockwise direction around the rectangular path. The four sides of the rectangle correspond to

- (A) Constant temperature, T_h
- (B) Constant entropy, S_h
- (C) Constant temperature, T_l
- (D) Constant entropy, S_l

- (a) Make a T - S diagram that represents this cyclic process. Label the axes, the four steps (A through D), the direction of each process, and the key values of S and T . The horizontal axis corresponds to which variable? Why?
- (b) Does a clockwise path in T - S space correspond to a heat engine or a heat pump?
- (c) Create a table, like the one below, and fill in all the values in terms of T_l , T_h , S_l and S_h :

Process	ΔU	Q	W
A			
B			
C			
D			

- (d) If this cycle corresponds to a heat engine, find the efficiency in terms of T_h and T_l . Alternatively, if this cycle corresponds to a heat pump, find the coefficient of performance in terms of T_h and T_l .

2 Helmholtz Free Energy of a Van Der Waals Gas

The Helmholtz free energy of a van der Waals (vdW) gas can be written as:

$$F = -NkT \left\{ 1 + \ln \left[\frac{(V - Nb)T^{\frac{3}{2}}}{N} \right] \right\} - \frac{aN^2}{V}$$

Where a and b are constants.

- (a) Derive the equation of state (relationship between p , T , and V) for this Helmholtz free energy.
Hint: The starting equations for this problem include the thermodynamic identity, the definition of Helmholtz free energy, $F = U - TS$, and math identities such as the overlord equation.
Bonus point: Rearrange the vdW equation of state to highlight any similarities with the ideal gas equation of state ($pV = NkT$). To highlight similarities, group together terms that have dimensions of pressure, group together terms that have dimension of volume, etc.

(b) Using your expression from part (a), sketch or plot $p(V)$ at various fixed temperatures. The volume axis should include Nb up to $6Nb$. Your plot can be dimensionless (i.e. V/Nb on the x axis). Select values of NkT and aN^2 that give curves with different shapes. Can you create a minima in pressure near $V = 2Nb$?