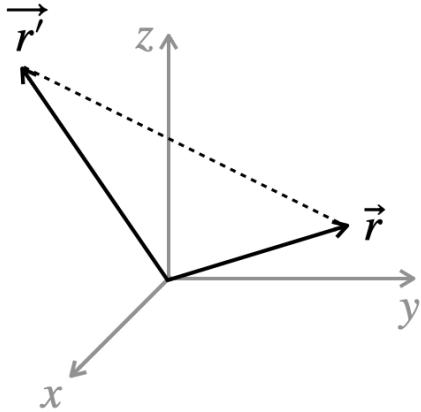


1 Use What You Know on the Helix


- (a) Evaluate $d\vec{r}$ along the helical path $z = 7\phi$.
- (b) Evaluate $|d\vec{r}|$ along the helical path $z = 7\phi$.

2 Distance Formula in Curvilinear Coordinates

Review from the Theoretical Mechanics Paradigm

The distance $|\vec{r} - \vec{r}'|$ between the point \vec{r} and the point \vec{r}' is a coordinate-independent, physical and geometric quantity. But, in practice, you will need to know how to express this quantity in different coordinate systems.

- (a) Find the distance $|\vec{r} - \vec{r}'|$ between the point \vec{r} and the point \vec{r}' in rectangular coordinates.

- (b) Show that this same distance written in cylindrical coordinates is:

$$|\vec{r} - \vec{r}'| = \sqrt{s^2 + s'^2 - 2ss' \cos(\phi - \phi') + (z - z')^2}$$

Hint: You may want to use the textbook: GMM: Change of Coordinates

- (c) Show that this same distance written in spherical coordinates is:

$$|\vec{r} - \vec{r}'| = \sqrt{r'^2 + r^2 - 2rr' [\sin \theta \sin \theta' \cos(\phi - \phi') + \cos \theta \cos \theta']}$$

Hint: You may want to use the textbook: GMM: Change of Coordinates

- (d) Now assume that \vec{r}' and \vec{r} are in the x - y plane. Simplify the previous two formulas.