

1 Taylor series approximation for cosine

A Taylor series can be used to create an approximation for a function, which we call a *power series approximation*. The Taylor series for cosine is:

$$\cos(\theta) = \sum_{i=0}^{\text{even}} \frac{(-1)^{i/2}}{i!} \theta^i \quad (1)$$

where the sum goes to ∞ over even values of i .

- (a) Write a function that given θ and i_{\max} computes the Taylor series of $\cos \theta$ including the terms up to and including $i = i_{\max}$.
- (b) Test your function by printing $\cos(0.01)$ and a few approximations of this with moderate i_{\max} . Save these tests as part of your program.
- (c) Plot $\cos \theta$ and be sure to label your axes.
- (d) Plot your Taylor series approximation for i_{\max} of 0, 1, 2, and 3. Use a legend to distinguish between your curves.