

1 Separable ODEs

Solve the following differential equations by separation. b and c are constants with the appropriate dimensions.

- (a) $\frac{dv}{dt} = ct$ where $v(t = 0) = 55$
- (b) $\frac{dp}{dm} = -cp$ where $p(m = 0) = p_0$
- (c) $\frac{dz}{dk} = -b - cz$ where $z(k = 0) = z_0$

2 Constant Acceleration by Separation of Variables

- (a) **Calculate:** Treat Newton's 2nd law as a separable differential equation and solve for the velocity and position as a function of time of an object that is all of the following:
 - moving in one dimension,
 - not initially at the origin of coordinates,
 - moving with a non-zero initial speed,
 - experiences a constant force.
- (b) **Reflect:** Do your answers look familiar? If yes, from where? If not, how would you have to modify these equations to be similar to equations you know?